About NCCU Academics Admissions Athletics Campus Life Giving Research

Researchers Find Antiperspirants Alter Human Microbes

 
Dr. Julie Horvath and fellow researchers
Dr. Julie Horvath and fellow researchers
Published: Tuesday, February 02, 2016

Wearing antiperspirant or deodorant doesn’t just affect your social life, it substantially changes the microbial life that lives on you.

New findings by researchers at North Carolina Central University (NCCU) and other institutions finds that antiperspirant and deodorant can significantly influence both the type and quantity of bacterial life found in the “microbiome” of the human armpit.

The work was a joint project by researchers at NCCU, North Carolina State University, the North Carolina Museum of Natural Sciences, Rutgers University and Duke University.      

“We wanted to understand what effect antiperspirant and deodorant have on the microbial life that lives on our bodies, and how our daily habits influence the life that lives on us,” says Julie Horvath, an associate research professor at NCCU and head of the genomics and microbiology research laboratory at the NC Museum of Natural Sciences. “Ultimately, we want to know if any changes in our microbial ecosystem are good or bad, but first we have to know what the landscape looks like and how our daily habits change it.”

Horvath is corresponding author of a paper describing the work published Feb. 2 in the journal PeerJ.

“Thousands of bacteria species have the potential to live on human skin, and in particular in the armpit,” says Rob Dunn, a professor of applied ecology at NC State and co-author of the paper. “Just which of these species live in any particular armpit has been hard to predict until now, but we’ve discovered that one of the biggest determinants of the bacteria in your armpits is your use of deodorant and/or antiperspirant.”

Use of underarm products has become widespread among most Americans over the last century, notes Julie Urban, co-author of the PeerJ paper and assistant head of the genomics and microbiology laboratory at the NC Museum of Natural Sciences.

“Yet, whether use of these products favors certain bacterial species – be they pathogenic or perhaps even beneficial – seems not to have been considered and remains an intriguing area needing further study,” Urban said.

To learn about the microbial impact of antiperspirant and deodorant, the researchers recruited 17 study participants: three men and four women who used antiperspirant products, which reduces the amount an individual sweats; three men and two women who used deodorant, which often includes ethanol or other antimicrobials to kill off odor-causing microbes; and three men and two women who used neither product. They then launched an eight-day experiment in which all of the participants had swabs taken of their armpits between 11 a.m. and 1 p.m.

On day one, participants followed their normal hygiene routine in regard to deodorant or antiperspirant use. On days two through six, participants did not use any deodorant or antiperspirant. On days seven and eight, all participants used antiperspirant.

The researchers then cultured all the samples to determine the abundance of microbial organisms growing on each participant and how that differed day to day.

“We found that, on the first day, people with antiperspirant did have fewer microbes in their samples than people who didn’t use product at all – but there was a lot of variability, making it hard to draw firm conclusions,” Horvath says. “In addition, people who used deodorant actually often had more microbes – on average – than those who didn’t use product.”

By the third day, participants who had used antiperspirant were beginning to see more microbial growth. And by day six, the amount of bacteria for all study participants was fairly comparable.

“However, once all participants began using antiperspirant on days seven and eight, we found very few microbes on any of the participants, verifying that these products dramatically reduce microbial growth,” Horvath notes.

The researchers also did genetic sequencing on all of the samples from days three and six, to determine how antiperspirant and deodorant might affect the microbial biodiversity – the composition and variety of types of bacteria – over time.

They found that, among study participants who hadn’t worn deodorant or antiperspirant, 62 percent of the microbes they found were Corynebacteria, followed by various Staphylococcaceae bacteria (21 percent), with a random assortment of other bacteria accounting for less than 10 percent.

The participants who had been regular antiperspirant users coming into the study had wildly different results. Sixty percent of their microbes were Staphylococcaceae, only 14 percent were Corynebacteria, and more than 20 percent were filed under “other” – meaning they were a grab bag of opportunistic bacteria.

“Using antiperspirant and deodorant completely re-arranges the microbial ecosystem of your skin – what’s living on us and in what amounts,” Horvath says. “And we have no idea what effect, if any, that has on our skin and on our health. Is it beneficial? Is it detrimental? We really don’t know at this point. Those are questions that we’re potentially interested in exploring.”

The new findings also highlight how human behavior can have a profound, if unintended, impact on the evolution of microbial organisms.

In another paper, published last month in Proceedings of the Royal Society B, the researchers, along with collaborators at Duke and the University of Pennsylvania, examined the diversity and abundance of microbes found in the armpits of humans, and compared them to those of other primates: chimpanzees, gorillas, baboons and rhesus macaques. In that paper, the researchers found that armpit microbes in individual primates species have evolved over time. But the microbial ecosystems found in the armpits of humans are vastly different – and far less diverse – than those found in other primate relatives.

“One exciting finding was that the non-human primates were more covered in fecal- and soil-associated microbes, which we often view as dirty,” Horvath says. “Perhaps the diversity of fecal and soil microbes on non-human primate skin serves some benefit that we don’t yet understand or appreciate.”

It isn’t surprising that evolutionary changes seen in primates would also occur in microbes over time, Horvath added. But use deodorant, perfume and even soap and water has an impact, too.

“We appear to have altered that process considerably through our habits, from bathing to taking steps to change the way we look or smell,” Horvath said.

The PeerJ paper is titled: “The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome” and was co-authored by Daniel Fergus, Amy Savage, Megan Ehlers and Holly Menninger.

 


Spread the Word

Post this story on Facebook
Tweet It

Get More News

  • All NCCU News
  • Campus Echo - Student News
  • See Today's Top Story
  • Or,  
© 2016
North Carolina Central University
1801 Fayetteville St., Durham, NC 27707